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A Hybrid Representation of the Green’s
Function in an Overmoded

Rectangular Cavity

DORIS I. WU, MEMBER, IEEE, AND DAVID C. CHANG, FELLOW, IEEE

Abstract — A hybrid ray-mode representationof the Green’s function in

a rectangular cavity is developed using the finite Poisson summation

formula. In order to obtain a numerically efficient scheme for computing

the field generated by a point source in a large rectangular cavity, the

conventional modaf representation of the Green’s function is modified in

such a way that all the modes near resonance are retained while the

truncated remainder of the mode series is expressed in terms of a weighted

contribution of rays. For an electrically large cavity, the contribution of

rays from distant images becomes small; therefore the ray sum can be

approximated by one or two dominant terms without a loss of numerical

accuracy. To illustrate the accuracy and the computational simplification of

this ray-mode representation, numerical examples are included with the

conventional mode series (summed at the expense of long computation

time) serving as a reference.

I. INTRODUCTION

I N ANALYZING fields due to scattering or excitation

of a radiating structure inside an electrically large and

overmoded rectangular cavity such as the NBS reverberat-

ing chamber used in EMI testing [1], [2], we often encoun-

ter the dyadic Green’s function expressed in the modal

form as the kernel for the desired integral equation. One

issue that often arises is how to obtain a numerically

efficient scheme for computing the dyad, particularly when

the observation point is close to the source point. A modal

representation is clearly not practical, since the conver-

gence of the triply infinite sum of higher order, nonreso-

nant modes is notoriously, if not impractically, slow.

In this paper, a finite, three-dimensional Poisson sum-

mation formula is used to obtain a hybrid representation

for the Green’s function. This hybrid representation con-

sists of two terms. The first term, called the mode sum,

consists of a finite number of modes near resonance. The

number of modes varies depending upon the bandwidth

chosen. The second term, referred to as the ray sum,
consists of all the images produced by the reflecting

boundaries of the cavity. The bandwidth for the mode sum

is a mathematical quantity. A balancing effect exists be-

tween the two terms in that as the bandwidth increases, the
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contribution from the mode sum increases while the con-

tribution from the ray sum decreases. Though the band-

width is an arbitrary quantity, it does have a minimal

requirement. Below this minimal value the hybrid repre-

sentation becomes a poor approximation to the modal

representation. As will be shown, this minimal requirement

stems from the approximation involved in transforming

from the rectangular coordinates to spherical coordinates

in applying the finite Poisson summation formulation.

The hybrid representation is especially effective when

the source point is close to the observation point. For an

electrically large cavity, often the second or the third layer

images and beyond are far away from the observation

point, so the contribution from these images becomes very

small. Therefore, we have found that it is often sufficient

to keep just the self term and perhaps several adjacent

images for the ray sum to obtain the desired numerical

accuracy.

II. DYADIC GREEN’S FUNCTION

A complete dyadic Green’s function of the electric type

valid inside and outside of the source region in a rectangu-

lar cavity requires that it satisfies the appropriate boundary

conditions on the cavity walls as well as the differential

equation

vxvx&k:G=7’(r-r’), F=ii + j) + 22? (1)

where k. is the free space wavenumber, r and r‘ represent

the distances from the origin to the observation and the

source point, respectively, and an e’a~ time variation is

assumed. As illustrated in [3] and [4], the solution to (1)

can be represented in many ways. For example, one way to
represent the dyad is to separate the field into a zero-diver-

gence type, d~noted by ~te and ~~, and a zero-curl type,

denoted by F, as
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where

kcos(%x)c”s(%lsin( :z)’
&=vx L

Z:”=vxvx
asin(:x)sini&)cOs( :’)’

~=v(*si”(%)sin(%’) sin(:z))

and

“=(:)’+(;)’+(+)’

“n=(:)’+(%)’

{

2 form= O,orn=O, orp=O
em=

6 form, n,p#O.

Equation (2) for ~ can also be written in a different

form using a set of modal functions similar to those used

in waveguide theory. These modal functions are

“’r’= acos(%x)sin(%’)sin(%z)

+:(r) =
*S’”(%X)C”S(%’) S’”(:Z)

~’r)=*sin(:x)sin(Y’lcOs(:z)

and

o.(r) = *
‘in(:x) sin(?~)sin(=z)-

In terms of these modal functions, (2) can be written as

%Hr’)JY

(3)

Equation (3), as well as (2), is a complete solution of the

dy;dic differential equation (l). It is ;alid both inside and

outside of the source region. Although the singular nature

of (3) or (2) in the source region is not immediately

obvious, it can be shown numerically and it is in fact

embedded in the irrotational, or the zero-curl, component

of the dyad [5], [6]. Howard et al. [6] extracted the domi-

nant singular term from the irrotational component of the

dyad and showed that it has the same singularity as the

free-space dyad. This will also become apparent in the

next section when we reexpress the irrotational component

of (3) into an image series using the Poisson summation
transformation. Despite the singular nature in the source

region, the dyad is valid in the sense that the singularity is

integrable. For rigorous treatment on the singularity of the

Green’s function for a bounded region, we defer to the
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existing work, such as [7]–[9], available in the literature. In

this paper, we will use the dyad as expressed in (3) with the

implicit understanding that the function is to be treated as

a distribution or a generalized function.

In computing the fields in a carity, we resort to numeri-

cal computation. However, since the summation indices 0$

(3) extend from O to co, numerical computation of G

becomes more and more tedious as the observation point

approaches the source point. This, motivates our search for

an alternate representation for the dyad which is more

efficient from a computational viewpoint.

In searching for an alternate representation, our ap-

proach is to use the Poisson summation transformation to

obtain a hybrid ray–mode representation for the dyad.

This method of hybrid ray–mode reformulation is not

new, being first developed for guided electromagnetic and

acoustic fields [10]. For example in [11] and [12], the

equivalence between mode and ray representations for

guided propagation is illustrated, Treatment of waveguide

fields using hybrid formulation can also be found in [13]

and [14]. Different from the existing work cited above, our

treatment is a reformulation for a three-dimensional cav-

ity. We begin our treatment with a description and appli-

cation of both the infinite and the finite Poisson summa-

tion transformation.

111. INFINITE POISSON TRANSFORMATION

A one-dimensional Poisson summation formula can be

expressed as [15]

provided that f(x) is a continuous function of x and

X:= - ~ f (2n n ) converges absolutely. Extending to three
dimensions, we have

m,n, p=—cc

. el(w +ih+tn) drldr., dr~.
. (5)

The corresponding f (m, n, p) in the dyadic Green’s func-

tion expression (3) consists of different combinations of

sin () and cos ( ). For illustrative purposes, we will consider

only the case of a scalar Green’s functionesimilar in form

to -the different components embedded in G. To generalize,

a complex wavenumber ~0 will be used to represent the

cavity medium.

Consider

(6)
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with

( ~ ) (~~lsin(+z) “a)
q(r) =sin ‘x sin

By letting kX = m~/a, kY = n~/b, k== pw/c, and rewrit-

ing each sinusoid as exponential, we can expand the

product Q( r)+(r’) into eight exponential terms, each in

the form of (~ei[~.~+~,y+~,z] ), where X=(x – x’) or (x +

x’), Y= (y – y’) or (y + y’), and Z= (z – z’) or (z + z’).

Consider each term separately in the generic form; let

~,[k, X+k,Y+k=Z]

f(m, n,p)=
64(k; –~;) “

(7)

If we apply the 3-D Poisson summation formula (5) to the

summation of ~( m, n, p), the triple integration can be

carried out in a straightforward manner by transforming to

the spherical coordinates [16]. The result is

where

R(a,P,C) = [( X+2aa)2+(Y+2b6) 2+( Z+2c$)2]”2.

Performing the similar transformation to every decom-

posed component of @(r) @(r’), we recombine and yield

where

R,= [( X,+2aa)2+(~ +2bj3)2+(Z[ +2cf)2]1’2 (9a)

(

x= (x-x’)> 1=0,1,2,3

‘ (X+.X’), 1=4,5,6,7’

{

~= (Y-Y’), 1=0,3,6,7

(y+y’), 1=1,2,4,5 ‘

~1= (’-”), 1=0,2,4,6

( (z+”), 1=1,3,5,7”

R, represents the distance from the observation point to
every image source. The right side of (9) is a summation of
the free-space Green’s function due to sources located at

RI. These sources correspond to the image sources result-

ing from the reflection at the cavity walls. Therefore, by

the use of Poisson transformation we obtain an expression

which has the physical interpretation of rays emanating

from the various image sources. A result similar to (9) was

obtained by Hamid et al. in [17]. Their approach was

slightly different in that they started with the right side of

(9) by invoking the image theorem. The Poisson summa-

tion formula was then applied to obtain a modal represen-

tation of the Green’s function.

By reexpressing the modal sum into an image series, the

singularity embedded in the modal sum becomes apparent.

The modal sum on the left side of (9) comes from the

irrotational component of the dyad in (2). The dominant

singularity in the modal sum can be extracted easily from

the image series and it is simply proportional to the

l/(4~Ro) term, where

Ro=[(x- x’)2+(y -y ’)2+( z-z’) 2]1”.

This singularity agrees with the one obtained by Howard

et al. in [6]. Moreover, it is consistent with the observation

made by Lee et al. [8] that the dominant singular term in

the Green’s function for a bounded region is independent

of the boundary.

IV. FINITE POISSON TRANSFORMATION

For finite sums over arbitrary intervals, the

summation formula can be expressed as [18]

Poisson

where f(x) is a function of real variable x such that f(x)

possesses a Fourier series expansion over any interval in

the range n–a–l/2<x<N+l–a. N and n are in-

tegers such that n < N, and a is any real number such that

Ial <1/2.

For a = O, the summation formula in 3-D form can be

expressed as

MNP

m=mon=nop=po

= Z5X JM+l/2jN+1/2jp+ 1’2f(W,2>Z)
~,fi,{=_w mO -1/2 no–1/2 po–1/2

. e127r(cq +L%+<T3J dT1 dT2 dr3. (11)

To apply (11) to the summation of the f (m, n, p) de-
fined in (7), we first transform the integration from rectan-

gular coordinates to the spherical coordinates in a manner

detailed in the Appendix. The justification for this involves

the selection of a finite number of sets of (m, n, p) such

that the corresponding value of k. for each mode falls

within a spherical shell of width ( k2 – kl), where kl < k.
< ka (see Fig. 1). The integration volume on the right side

of (11) is then approximated by the corresponding spheri-

cal shell. The result, as derived in the Appendix, is given as

(12)

where g( a, ~, ~: R) is defined in (A9); it consists of combi-

nations of sine and cosine integral functions. The notation

So under the sums represents all the modes (m, n, p ) such

that kl < ka < k2. This range is essentially a summation of

all the modes near resonance.
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Fig. 1. A summation shell.

Performing the similar transformation to every decom-

posed component of @(r) @(r’) and combining with (9), we

can express the Green’s function as

(13)

where R ~, as given in (9a), is the distance from an observa-

tion point to an image source described by the parameters

(a, ~, ~), and g(a, ~, $; R,) is defined in (A9) with R

replaced by R1. For ease of identification, we refer to the

sum over So as the mode sum, the second sum involving

(a, ~, ~) as the ray sum, and the sum on the left side of

(13) as the triple sum.

For the case of real ko, if we choose So to be symmetri-

cal about Ico so that kl = k. – y, and k2 = k. + y. where

2y is the summation shell width, then (13) can be sim-

plified to

+(r)+(r’) abc
G(r, r’) = ~,~,~ ~2_k, + ~ 7.% ~ (–1)’

a o a,~,.g =-m 1=0~{ ~

cos(koRz)

47rRl )}
1– ~Si(yRl) –A, (14)

where

A,= cO~n~R~[) [Si(R,(2ko+ y))- Si(R[(2ko -y))]

A balancing effect exists between the mode sum and the

ray sum. When we increase y, i.e., increase the bandwidth

for the mode sum, the number c~f modes that fall within

the band will be increased. Therefore the contribution

from the mode sum will be increa~sed at the same time the

quantity (1 – 2/T Si( Rly)) decreases, thus reducing the

contribution from the ray sum.

The hybrid representation of the Green’s function as

expressed in (14) is especially useful for cavities that are

electrically large. When the dimensions of the cavity are

large and the observation point is close to the source

point (and away from the walll), the ray sum will be

dominated by the self term, cos ( kORo)/4wR ~, R o =

[(x – X’)2 +(y – y’)2 +(z – z’)2]]/2. Therefore for a source

located not near the wall, we can approximate (14) further

to yield

where the correction

A.= cO~m~R~O) [Si(RO(2ko+ y))- Si(Ro(2ko - y))]

— ‘l~~RRO) [Ci(Ro(2ko-r y))- Ci[RO(2k0- Y))]
0

(15a)

contributes a negligible amount. Numerical data showing

the closeness eif this approximation will be presented in the

next section, along with the criterion for choosing a

minimum y.

Although (15) is only an approximation to tllw~ exact

expression, addition of a few or more images will not

necessarily improve the approximation in a monotonic

fashion. T&s is so because while the higher order images

are decaying at the rate of l/R ~, the number of images is

increasing at the rate proportioned to R;. Therefore the

summation of the remaining terms is likely to be a slow

but bounded oscillatory term of order 0(1). This contribu-

tion is, negligible only because the mode sum usually has a

large amplitude; i.e., (k~ – k;)” 1>>1 near resonance. As

will be shown in the following numerical examples, retain-

ing only those images with koR, <<1 is sufficient to yield a

satisfactory agreement with the numerically “exact”

answer.

‘l~~~R[) [Ci(R,(2ko+ y))- Ci(R1(2ko - y))].
V. NUMERICAL EXAMPLES

—
To simplify comtmtations, we assume k. is real and the

(14a) ‘ “ -cavity is cubic. The frequency of operation is fixed at 1

GHz (A = 0.3 m), and the length of the cavity is arbitrarily

For y << ko, A, contributes only a negligible amount. When chosen to be a = b = c = 15.23A. Two cases will be consid-

koR ~ is small, the ray sum is dominated by ered. In case 1, we fix the source point near the center of

cos ( koRl)/4TR,, and when yR 1 is large, the image terms the cavity and vary the observation distance. In case 2, we

are oscillatory and are weighted by (1/R?y ). vary the source point along a vertical axis and show that
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Fig. 2. Comparison of the mode sum and the hybrid sum with the triple
sum for centered source point with 0.2 v < k. R. < n

when the source point is close to the ceiling, the first image

must be included in (15) to get a good approximation.

In evaluating the triple sum, we first reduce

Z;~OZ~=oZ~=04(r)@(~’)/(k~ – k:) to a double sum using
a known summation result [19]. At the expense of long

computation time, the reduced summations are summed

with indices extending from O to a large number M. To

minimize error, care is taken in the determination of M to

ensure that the remaining sum from M to m is negligible

compared to the sum from O to M. Typically 90000 terms

are needed to yield an error of less than 1 percent for

kORO > 0.151r.

In what follows, we have chosen the half-width of the

spherical shell to be y = O.OlkO. This corresponds to a

total of 831 “resonant modes” within the shell. As before,

the term “ triple sum” refers to the original unmodified

triple summation, the term” mode sum’” refers to the finite

sum over all these resonant modes, and the term “hybrid

sum” is the total contribution from the mode sum and the

dominant term(s) of the ray sum.

Case 1: Centered Source Point

With the source point near the center, Fig. 2 shows the

variations of the mode sum, the hybrid sum, and the triple

sum with koR ~ varying from 0.2 n to m, and Fig. 3 has
koll o varying from ~ to 10~. R ~ is the distance between

the source and the observation point. Within the range of

small koR o, especially at koR 0< n, the self term plays an

important role. With just the self term included, the hybrid

sum provides a very good approximation to the triple

modal sum.

As kORo increases, the self term loses its dominant

effect. At large koRO, i.e., kollo z 5T, every term in the
ray sum, including the self term, becomes very small.

Therefore the contribution on the right side of (15) comes

directly from the finite mode sum, as is evident in Fig. 3.

Ld
3
-1
u
>

-1
u
v

Et
5
z

Fig. 3.

CENTEREDSOURCEPOINT

la~

5 -

a-

-5 -

-tB -

-15 -

-20 -

x—i! TRIPLE SUM

#—# MODESUM

o—o HYBRID SUM
i

Comparison of the mode sum and the hybrid sum with the triple

sum for centered source point with m < k. /?O< 10T.

At the intermediate range of kORO (0.84r < kORO < 27),

the contribution from the self term is losing its dominant

effect, but it is not quite small enough to be totally

negligible. To further close the gap between the hybrid

sum and the triple sum, we either have to sum all of the

image terms or increase the bandwidth to increase the

contribution due to the mode sum. Howerer, a numerical

check on the effect of increasing bandwidth showed that

the computation time for the mode sum increases much

faster than the convergence rate. Neither summing more

images nor increasing the bandwidth appears to provide a

viable way to close the gap, so we may have to accept the

slight deviation from the exact value in exchange for fast

computation time for kOR ~ in this intermediate range.

Case 2: Off-Centered Source Point

Figs. 4 and 5 show the variations of the mode sum, the

hybrid sum, and the triple sum as the source point is

varied. In this example, kOR ~ is fixed at 0,,2w throughout,

while kOR1 is varied from 0.3w to 10T (see Fig. 6). With

the first image term included, (15) becomes

+:i(–ly [Co::;y ] ] (1Ql–~Si(yRl) –A,
1=0

where A ~ is as defined in (14a), and

RO=[(x- x’)2+(y -y ’)2+( z–z’)2]1’2,

R,= [(X - X’)’+(y - ~’)2+(Z -(2c -- z))’]’”.
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Fig. 4. Comparison of the mode sum and the hybrid sum with the triple

sum for off-centered source point with 0.3 n < k. RI < m.

OFF-CENTERED SOURCE POINT

la I I I I I I 1 1 I

#—# t40DE SUtl e—e HYBRID (SELF)

tt-if TRIPLE SUM O—O HYBRID (SELFtl IM)

Fig. 5. Comparison of themode sumandthe hybrid sumwith the triple
sum for off-centered source point with n < k. RI < 10m.

When the source is close to the wall, i.e., when koR1 is

small, the addition of the first image term becomes essen-

tial. Fig. 4 shows that without the addition of the first

image term, the self term alone is not enough for the

equality to hold in (15). As the source is moved away from

the wall, i.e., koR1 is increased, Fig. 5 shows that the

contribution from the first image in (16) becomes small
(almost negligible at koR1 > 67r). With large k#l, wc

revert back to case 1, where the self term is dominant.

In the above calculations, we have chosen the half-width

of the spherical shell, y, to be (0.01) ko. Increasing y

increases the number of modes in the band, which may

FIRST
IMAGE

I
Al

c *
I

I

\
! R.

I

I
I
I

I I

x-z PLANE
a

Fig. 6. A cross-sectional view of the first image distance RI and the
distance RO between the source and the observation point.

increase the computation time if the number of modes in

the mode sum is large. However, while decreasing the

bandwidth may decrease the computation time, it may also

introduce an approximation error which may cause (12) to

become invalid if y is too small. To show this we must go

back to the derivation of (12) in the Appendix.

Fig. 9 displays the approximation we made in applying

the finite Poisson transformation. The shaded grid area,

which represents the range of integration for the function

F( a, B, t) in (A3), is approximated by the spherical shell.
Although we can arbitrarily choose the number of grids to

match the shell, each grid has a minimum width since the

minimum increment of (m, n, p) must be 1; i.e., the

minimum summation interval must be from (m o, no, PO) to

(m. + 1, no + 1, PO+ 1). The minimum grid width is there-

fore m/a, where a corresponds to the smallest dimension

of the cavity. For our choice of a =15.23X and y = O.Olko,

we have a ratio of shell width to minimum grid width of

approximately 0.6, i.e.,

width ratio = ~~ = 0.6. (17)
,

‘To illustrate the effect of different shell widths, Fig. 7

shows the variation of the hybrid sum for 0.3 r < k# O<

0.4n as the width ratio is decretied below 0.6. With a very

small width ratio, the deviation between the hybrid sum
and the triple sum is indeed not acceptable. For width

ratios greater than 0.6, we get into the region of slow

convergence and increasing computation time. This trade-

off does not seem to be worthwhile for choosing a width

ratio greater than 0.6.
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Comparison of the hybrid sum with the triple sum for different
width ratios.

VI. SUMMARY

have shown in this paper that the Green’s function

for a rectangular cavity in the modal form can be trans-

formed into a hybrid representation consisting of a finite

mode sum and a sum over all the images. This hybrid sum

is effective for an electrically large cavity because it allows

for the disposal of all the distance image terms without

suffering an unacceptable loss of numerical accuracy. For

r near r‘ and r’ located away from the wall, a typical

modal sum in the dyadic Green’s function expression can

be approximated as

E?z ‘$!$’) “ xxx ‘$?$’)
a=(rr2, n,p)=o a o ,sOao

where

[ a ) (asin(+z)~(r) =sin ‘x sin

Ro= [(x–x’)2+(y –y’)2+(z–z’)2]1’2

and Si ( ) is the sine integral function. The finite mode sum

So contains all the modes that fall within a preset summa-

tion bandwidth of 2y centered about ko. For an electri-

cally large cavity, the selection of y is arbitrary so long as

it meets the criterion y >0.3 ~/a, where a is the smallest

dimension of the cavity. When the source is close to the

wall, the first image term must be included in the above

equation to yield a good approximation (see (16)).

The hybrid representation developed in this paper is

valid for either real or complex ko. Except for the require-

ment that the bandwidth chosen for the mode sum not be

too small, the hybrid representation is in general a good

approximation of the modal representation, and it pos-

sesses unique properties that allow for feasible numerical

evaluation. With this alternate representation, the effect of

a scatterer in an electrically large rectangular cavity can be

examined numerically. As illustrated in [20], this hybrid

Green’s function is most use~l in the numerical computa-

tion of the induced current J and the scattered field for a

simply structured scatterer in an electrically large rectangu-

lar cavity.

APPENDIX

SUMMING OVER FINITE INTERVALS

Consider the finite range sum defined as

M. N. P.

m=tnon=nop=po

Applying the finite Poisson summation formula (11), and

letting

and

we can transform (Al) to

where

~~[k. (~+2a~) +kv(Y-+2bB) +k,, (Z+2cf)]

F(a, p,&)=

( )
k:+k; +k; –~; “

(A3)

The summation intervals specified in (Al) transform di-

rectly into integration limits on the right side of (A2). A

typical range of integration would correspond to the shaded

area of Fig. 8, where each grid on the figure corresponds to
a different set of summation interval (m o, no, po) to

(MO, NO, F’o). Suppose we now arbitrarily select a finite set

of grids (or summation intervals) so that they are clustered

around k. as shown in Fig. 9. Then

[

IWO No P. M, N, P,

1xz~+..+xxxf(m,rz,p)m.nop“ m! ill PI

[
=$ X5x J“J+-- ‘ /..7]

CY,b’.~=-m grldl grid I

.F(a, ~,<) dkXdkvdkZ. (A4)
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kx
xl X2

Fig. 8. A typicaf range of integration for the finite sum.

We now make the approximations

[L!---++... M](F &, B,<) dkXdkYdkz
grid 1 grid 1

= j“j~(d>tb%dk,dkz (A,)
v~

where VO is the volume of the spherical shell bounded by

kl and kz, and

%

where the SO represents all the modes (m, n, p ) that fall

within the spherical shell. Combining (A5) and (A6) above,

we get

so

“w
#kx(x+2aa)+k,,(Y+ 2bB)+kz(z+2c E)l

k;+k; +k:)–~;
dkX dkY dkz.

v.
(A7)

The triple integration of (A7) can be evaluated in a

straightforward manner by transforming to the spherical

coordinates using the following substitutions:

k2=k; +k; +k:

kX = k sin 8~ cos ~~ kY = k sin Oksin q~ k== k COS I?k

p= [(x+2 aa)2+(Y+2bp)2]1’2

&[p’+(z+2c&]1’2
()

%= tan-l ‘+2b~ -X+2aa

The integrand becomes

~ipksin Okcos(+k ++.P)+ik cose~(z+2ct)

F(a, p,$)=
kz–~;
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ky

k.

k, k. k2
a

Fig, 9. Arrangement of a finite set of summation intervafs.

The result of this integration is

where

g(a, ~,g; l?)=
2c0s~0R)[~i[R(ko-k2))

-Si(R(~o -kl))+Si(R(ko+kl))

-Si(R(~o+k2))]

+
2sin$0R)[(~i(R(ko-kl)

-Ci(R(~o -k:,) )- Ci(R(~o+kl))

+Ci(R(ko+ k:,))]. (A9)

Si and Ci are the sine and cosine integrals, defined as

Si(z) = (;sin t/tdt, and Ci(z) ==– Jz~cos t/tdt. For real

k. and a symmetrical shell width, i.e., kl = k. – Y, k2 =

k.+ y, (A9) reduces to

g(%B>t; ~)= 2c0s#0R) [-2 Si(Ry)+Si(R(2ko -y))

–Si(R(2ko+yj)]

2sin(koR)
+ iR [--i* -Ci(R(2ko- y))

[1]

[2]

+Ci(R(2ko+ y))]. (A1O)
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