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A Hybrid Representation of the Green’s
Function in an Overmoded
Rectangular Cavity

DORIS 1. WU, MEMBER, IEEE, AND DAVID C. CHANG, FELLOW, IEEE

Abstract — A hybrid ray-mode representation of the Green’s function in
a rectangular cavity is developed using the finite Poisson summation
formula. In order to obtain a numerically efficient scheme for computing
the field generated by a point source in a large rectangular cavity, the
conventional modal representation of the Green’s function is modified in
such a way that all the modes near resonance are retained while the
truncated remainder of the mode series is expressed in terms of a weighted
contribution of rays. For an electrically large cavity, the contribution of
rays from distant images becomes small; therefore the ray sum can be
approximated by one or two dominant terms without a loss of numerical
accuracy. To illustrate the accuracy and the computational simplification of
this ray-mode representation, numerical examples are included with the
conventional mode series (summed at the expense of long computation
time) serving as a reference.

I. INTRODUCTION

N ANALYZING fields due to scattering or excitation

of a radiating structure inside an electrically large and
overmoded rectangular cavity such as the NBS reverberat-
ing chamber used in EMI testing [1], [2], we often encoun-
ter the dyadic Green’s function expressed in the modal
form as the kernel for the desired integral equation. One
issue that often arises is how to obtain a numerically
efficient scheme for computing the dyad, particularly when
the observation point is close to the source point. A modal
representation is clearly not practical, since the conver-
gence of the triply infinite sum of higher order, nonreso-
nant modes is notoriously, if not impractically, slow.

In this paper, a finite, three-dimensional Poisson sum-
mation formula is used to obtain a hybrid representation
for the Green’s function. This hybrid representation con-
sists of two terms. The first term, called the mode sum,
consists of a finite number of modes near resonance. The
number of modes varies depending upon the bandwidth
chosen. The second term, referred to as the ray sum,
consists of all the images produced by the reflecting
boundaries of the cavity. The bandwidth for the mode sum
is a mathematical quantity. A balancing effect exists be-
tween the two terms in that as the bandwidth increases, the

Manuscript received December 11, 1987; revised April 12, 1988.

D. 1. Wu is with the Electromagnetic Fields Division of the National
Bureau of Standards, Boulder, CO 80303.

D. C. Chang is with the Department of Electrical and Computer
Engineering, University of Colorado, Boulder, CO 80309.

IEEE Log Number 8822322,

contribution from the mode sum increases while the con-
tribution from the ray sum decreases. Though the band-
width is an arbitrary quantity, it does have a minimal
requirement. Below this minimal value the hybrid repre-
sentation becomes a poor approximation to the modal
representation. As will be shown, this minimal requirement
stems from the approximation involved in transforming
from the rectangular coordinates to spherical coordinates
in applying the finite Poisson summation formulation.

The hybrid representation is especially effective when
the source point is close to the observation point. For an
electrically large cavity, often the second or the third layer
images and beyond are far away from the observation
point, so the contribution from these images becomes very
small. Therefore, we have found that it is often sufficient
to keep just the self term and perhaps several adjacent
mmages for the ray sum to obtain the desired numerical
accuracy.

II. Dvyapic GREEN’S FUNCTION

A complete dyadic Green’s function of the electric type
valid inside and outside of the source region in a rectangu-
lar cavity requires that it satisfies the appropriate boundary
conditions on the cavity walls as well as the differential
equation
VXV XG-kG=18(r—r), I=3%%+9p+25 (1)
where kg is the free space wavenumber, » and r’ represent
the distances from the origin to the observation and the
source point, respectively, and an e'*’ time variation is
assumed. As illustrated in [3] and [4], the solution to (1)
can be represented in many ways. For example, one way to
represent the dyad is to separate the field into a zero-diver-
gence type, denoted by E* and E™, and a zero-curl type,
denoted by F, as
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Equation (2) for G can also be written in a different
form using a set of modal functions similar to those used
in waveguide theory. These modal functions are
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In terms of these modal functions, (2) can be written as
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Equation (3), as well as (2), is a complete solution of the
dyadic differential equation (1). It is valid both inside and
outside of the source region. Although the singular nature
of (3) or (2) in the source region is not immediately
obvious, it can be shown numerically and it is in fact
embedded in the irrotational, or the zero-curl, component
of the dyad [5], [6). Howard et al. [6] extracted the domi-
nant singular term from the irrotational component of the
dyad and showed that it has the same singularity as the
free-space dyad. This will also become apparent in the
next section when we reexpress the irrotational component
of (3) into an image series using the Poisson summation
transformation. Despite the singular nature in the source
region, the dyad is valid in the sense that the singularity is
integrable. For rigorous treatment on the singularity of the
Green’s function for a bounded region, we defer to the
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existing work, such as [7]-{9], available in the literature. In
this paper, we will use the dyad as expressed in (3) with the
implicit understanding that the function is to be treated as
a distribution or a generalized function.

In computing the fields in a cavity, we resort to numeri-
cal computation. However, since the summation indices of
(3) extend from 0 to co, numerical computation of G
becomes more and more tedious as the observation point
approaches the source point. This motivates our search for
an alternate representation for the dyad which is more
efficient from a computational viewpoint.

In searching for an alternate representation, our ap-
proach is to use the Poisson summation transformation to
obtain a hybrid ray-mode representation for the dyad.
This method of hybrid ray-mode reformulation is not
new, being first developed for guided electromagnetic and
acoustic fields [10]. For example in [11] and [12], the
equivalence between mode and ray representations for
guided propagation is illustrated. Treatment of waveguide
fields using hybrid formulation can also be found in [13]
and [14]. Different from the existing work cited above, our
treatment is a reformulation for a three-dimensional cav-
ity. We begin our treatment with a description and appli-
cation of both the infinite and the finite Poisson summa-
tion transformation.

II1.

A one-dimensional Poisson summation formula can be
expressed as [15]

> f(znw)-—l; > [ S

n=—00 v=—00

INFINITE POI1SSON TRANSFORMATION

e (4)
provided that f(x) is a continuous function of x and
2% _ofQ@nw) converges absolutely. Extending to three
dimensions, we have
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The corresponding f(m, n, p) in the dyadic Green’s func-
tion expression (3) consists of different combinations of
sin() and cos(). For illustrative purposes, we will consider
only the case of a scalar Green’s function_similar in form
to the different components embedded in G. To generalize,
a complex wavenumber k, will be used to represent the
cavity medium.
Consider
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By letting k, = ma/a, k,=nn/b, k, = pm/c, and rewrit-
ing each sinusoid as exponentials, we can expand the
product ¢(r)é(r’) into eight exponential terms, each in
the form of (te'lbX+ A Y42l where X = (x — x) or (x +
xN, Y=(y—y)or(y+y),and Z=(z—2") or (z+ 2').
Consider each term separately in the generic form; let
ok Xk, Y+£.Z]

wees
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If we apply the 3-D Poisson summation formula (5) to the
summation of f(m,n, p), the triple integration can be

carried out in a straightforward manner by transforming to
the spherical coordinates [16]. The result is

eoR(a.B.6)
Tie s = B g ©
where

R(a, B, £) = [(X+2aa)>+(Y+208) 2+ (Z +2c£)] "

Performing the similar transformation to every decom-
posed component of ¢(r)¢(r’), we recombine and yield
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where

R, = [(X,+2aa)*+ (¥, +268)*+(Z,+2¢8)Y” (9a)

Y- (x—x), 1=0,1,2,3
Tl (x+x), 1=4,567
v = (y=y), 1=0,3,6,7
Cl(r+y), 1=1,2,45"
7 - (z—2z"), 1=0,2,4,6
Tl (z+12), 1=1,3,57"

R, represents the distance from the observation point to
every image source. The right side of (9) is a summation of
the free-space Green’s function due to sources located at
R,. These sources correspond to the image sources result-
ing from the reflection at the cavity walls. Therefore, by
the use of Poisson transformation we obtain an expression
which has the physical interpretation of rays emanating
from the various image sources. A result similar to (9) was
obtained by Hamid er al. in [17]. Their approach was
slightly different in that they started with the right side of
(9) by invoking the image theorem. The Poisson summa-
tion formula was then applied to obtain a modal represen-
tation of the Green’s function.
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By reexpressing the modal sum into an image series, the
singularity embedded in the modal sum becomes apparent.
The modal sum on the left side of (9) comes from the
irrotational component of the dyad in (2). The dominant
singularity in the modal sum can be extracted easily from
the image series and it is simply proportional to the
1/(4wR ) term, where

Ry,= [(x - x')2+ (y— _v’)2+ (z— z’)Z] 2

This singularity agrees with the one obtained by Howard
et al. in [6]. Moreover, it is consistent with the observation
made by Lee ez al. [8] that the dominant singular term in
the Green’s function for a bounded region is independent
of the boundary.

IV. FINITE PO1SSON TRANSFORMATION

For finite sums over arbitrary intervals, the Poisson
summation formula can be expressed as [18]

Y- % [

I=n y=—o "Nt

N+a+1/2 ( )elzy""dq'

(10)

a=1/2

where f(x) is a function of real variable x such that f(x)
possesses a Fourier series expansion over any interval in
the range n—a—1/2<x<N+1—a N and n are in-
tegers such that #» < N, and « is any real number such that
la] <1/2.

For a=0, the summation formula in 3-D form can be
expressed as

P
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To apply (11) to the summation of the f(m,n, p) de-
fined in (7), we first transform the integration from rectan-
gular coordinates to the spherical coordinates in a manner
detailed in the Appendix. The justification for this involves
the selection of a finite number of sets of (m, n, p) such
that the corresponding value of k&, for each mode falls
within a spherical shell of width (k, — k), where k; <k,
< k, (see Fig. 1). The integration volume on the right side
of (11) is then approximated by the corresponding spheri-
cal shell. The result, as derived in the Appendix, is given as

ZZZf (m,n, p)~— 9>

o,B,§=—c0

a,B,§ R)
(12)

where g(a, B, & R) is defined in (A9); it consists of combi-
nations of sine and cosine integral functions. The notation
S, under the sums represents all the modes (m, n, p) such
that k; < k, < k,. This range is essentially a summation of
all the modes near resonance.
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Performing the similar transformation to every decom-
posed component of ¢(r)¢(r’) and combining with (9), we
can express the Green’s function as

é é égﬂ)ﬂr)

k2__k2
r abc oy 7
et sy £y
etkoRs 1
m*mg(a,ﬁyﬁ;&) (13)

where R, as given in (9a), is the distance from an observa-
tion point to an image source described by the parameters
(a,B,§), and g(a, B, R,) is defined in (A9) with R
replaced by R,. For ease of identification, we refer to the
sum over S, as the mode sum, the second sum involving
(a, B, £) as the ray sum, and the sum on the left side of
(13) as the triple sum.

For the case of real k, if we choose S, to be symmetri-
cal about k, so that k,=k,—v, and k, = k,+ v, where
2y is the summation shell width, then (13) can be sim-
plified to

) ZZZ¢(M;)

'<mq%&)

47R,

g:iz >:( 1!
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where
cos(koR,) | . .
1= W [Sl(R1(2ko +7))=Si(R,(2ko— Y))]
sin(kqR,)

- [Ci(R,(2ko+v)) —Ci(R,(2ko = ))].

(14a)

For v << k,, A, contributes only a negligible amount. When
koR, is small, the ray sum is dominated by
cos(koR,)/4mR,, and when YR, is large, the image terms
are oscillatory and are weighted by (1/R?y).
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A balancing effect exists between the mode sum and the
ray sum. When we increase v, i.e., increase the bandwidth
for the mode sum, the number of modes that fall within
the band will be increased. Therefore the contribution
from the mode sum will be increased at the same time the
quantity (1—2/7 Si(R,v)) decreases, thus reducing the
contribution from the ray sum.

The hybrid representation of the Green’s function as
expressed in (14) is especially useful for cavities that are
electrically large. When the dimensions of the cavity are
large and the observation point is close to the source
point (and away from the wall), the ray sum will be
dominated by the self term, cos(k,Ry)/47R,, R,=
[(x —x)%+(y — y)? +(z — z)?)'/% Therefore for a source
located not near the wall, we can approximate (14) further
to yield

i ¢( )¢>( )

Z 5 Z o (r)o(r)

=YXy

=0n=0p=0 S, kl_kz
b koR 2
%frgéajib~;&W&ﬂ—A4 (15)
where the correction
0= C_Oz(—kﬁ(ﬁ[&( 0(2ko+Y))"Si(R0(2ko_Y))]
in{kgR,
E%(ﬁl[c( (2k0‘77)) (R0(2k0—y))]

(15a)

contributes a negligible amount. Numerical data showing
the closeness df this approximation will be presented in the
next section, along with the criterion for choosing a
minimum Y. A

Although (15) is only an approximation to tH€ exact
expression, addition of a few or more images will not
necessarily improve the approximation in a monotonic
fashion. This is so because while the higher order images
are decaying at the rate of 1/R?, the number of images is
increasing at the rate proportioned to R?. Therefore the
summation of the remaining terms is likely to be a slow
but bounded oscillatory term of order O(1). This contribu-
tion is, negligible only because the mode sum usually has a
large amplitude; i.e., (k2—k3)~ !> 1 near resonance. As
will be shown in the following numerical examples, retain-
ing only those images with kR, <1 is sufficient to yield a
satisfactory agreement with the numerically “exact”
answer.

V. NUMERICAL EXAMPLES

To simplify computations, we assume k,, is real and the
cavity is cubic. The frequency of operation is fixed at 1
GHz (A = 0.3 m), and the length of the cavity is arbitrarily
chosen to be ¢ = b= c¢=15.23\. Two cases will be consid-
ered. In case 1, we fix the source point near the center of
the cavity and vary the observation distance. In case 2, we
vary the source point along a vertical axis and show that
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Fig. 2. Comparison of the mode sum and the hybrid sum with the triple
sum for centered source point with 0.27 < kg Ry <

when the source point is close to the ceiling, the first image
must be included in (15) to get a good approximation.

In evaluating the triple sum, we first reduce
XXl (r) (7)) / (k% — k§) to a double sum using
a known summation result [19]. At the expense of long
computation time, the reduced summations are summed
with indices extending from 0 to a large number M. To
minimize error, care is taken in the determination of M to
ensure that the remaining sum from M to oo is negligible
compared to the sum from 0 to M. Typically 90 000 terms
are needed to yield an error of less than 1 percent for
koRy> 0157,

In what follows, we have chosen the half-width of the
spherical shell to be y=0.01k,. This corresponds to a
total of 831 “resonant modes” within the shell. As before,
the term “triple sum” refers to the original unmodified
triple summation, the term “mode sum” refers to the finite
sum over all these resonant modes, and the term “hybrid
sum” is the total contribution from the mode sum and the
dominant term(s) of the ray sum.

Case 1: Centered Source Point

With the source point near the center, Fig. 2 shows the
variations of the mode sum, the hybrid sum, and the triple
sum with kR, varying from 027 to =, and Fig. 3 has
koR, varying from 7 to 10%. R, is the distance between
the source and the observation point. Within the range of
small k,R,, especially at k R, < «, the self term plays an
important role. With just the self term included, the hybrid
sum provides a very good approximation to the triple
modal sum.

As kyR, increases, the self term loses its dominant
effect. At large kR, i.e., koRy> 57, every term in the
ray sum, including the self term, becomes very small.
Therefore the contribution on the right side of (15) comes
directly from the finite mode sum, as is evident in Fig. 3.
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Fig. 3. Comparson of the mode sum and the hybrid sum with the triple

sum for centered source point with 7 < ky Ry <10m.

At the intermediate range of kR, (0.87 < kR, < 27),
the contribution from the self term is losing its dominant
effect, but it is not quite small enough to be totally
negligible. To further close the gap between the hybrid
sum and the triple sum, we either have to sum all of the
image terms or increase the bandwidth to increase the
contribution due to the mode sum. However, a numerical
check on the effect of increasing bandwidth showed that
the computation time for the mode sum increases much
faster than the convergence rate. Neither summing more
images nor increasing the bandwidth appears to provide a

viable way to close the gap, so we may have to accept the

slight deviation from the exact value in exchange for fast
computation time for kR in this intermediate range.
Case 2: Off-Centered Source Point

Figs. 4 and 5 show the variations of the mode sum, the
hybrid sum, and the triple sum as the source point is
varied. In this example, k4R, is fixed at 0.27 throughout,
while kR, is varied from 0.37 to 107 (see Fig. 6). With
the first image term included, (15) becomes

ZiZO ¢](€2)¢(r Z§Z o(r )(b;(:z)

cos(koR,)
47R,

abe 1 J 2.
*TEOH)[ (1—;sl(yR,))~A,] (16)

where A, is as defined in (14a), and

Ro=[(x—x)+(y=y)+(z—2)]"

Ry = [(X - X')2+(y — )")2+(z ~(2¢- Z,))z]l/z'
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Fig. 5. Comparison of the mode sum and the hybrid sum with the triple

sum for off-centered source point with 7 < kg R, <10.

When the source is close to the wall, i.e., when k4R, is
small, the addition of the first image term becomes essen-
tial. Fig. 4 shows that without the addition of the first
image term, the self term alone is not enough for the
equality to hold in (15). As the source is moved away from
the wall, ie., k,R; is increased, Fig. 5 shows that the
contribution from the first image in (16) becomes small
(almost negligible at ko R, > 67). With large koR,, we
revert back to case 1, where the self term is dominant.

In the above calculations, we have chosen the half-width
of the spherical shell, y, to be (0.01)k,. Increasing vy
increases the number of modes in the band, which may
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a
x-z PLANE

Fig. 6. A cross-sectional view of the first image distance R, and the
distance R between the source and the observation point.

increase the computation time if the number of modes in
the mode sum is large. However, while decreasing the
bandwidth may decrease the computation time, it may also
introduce an approximation error which may cause (12) to
become invalid if v is too small. To show this we must go
back to the derivation of (12) in the Appendix.

Fig. 9 displays the approximation we made in applying
the finite Poisson transformation. The shaded grid area,
which represents the range of integration for the function
F(a, B, £) in (A3), is approximated by the spherical shell.
Although we can arbitrarily choose the number of grids to
match the shell, each grid has a minimum width since the
minimum increment of (m,n, p) must be 1; ie., the
minimum summation interval must be from (m,, ny, po) to
(my+1,n,+1, p,+1). The minimum grid width is there-
fore #/a, where a corresponds to the smallest dimension
of the cavity. For our choice of ¢ =15.23X and y = 0.01k,,
we have a ratio of shell width to minimum grid width of
approximately 0.6, i.e.,

(17)

2y
width ratio = —— = 0.6.
7/a

/

‘To illustrate the effect of different shell widths, Fig. 7
shows the variation of the hybrid sum for 0.37 < ko R, <
0.47 as the width ratio is decreased below 0.6. With a very
small width ratio, the deviation between the hybrid sum
and the triple sum is indeed not acceptable. For width
ratios greater than 0.6, we get into the region of slow
convergence and increasing computation time. This trade-
off does not seem to be worthwhile for choosing a width
ratio greater than 0.6.
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VI. SUMMARY

We have shown in this paper that the Green’s function
for a rectangular cavity in the modal form can be trans-
formed into a hybrid representation consisting of a finite
mode sum and a sum over all the images. This hybrid sum
is effective for an electrically large cavity because it allows
for the disposal of all the distance image terms without
suffering an unacceptable loss of numerical accuracy. For
r near r’ and ' located away from the wall, a typical
modal sum in the dyadic Green’s function expression can
be approximated as

°° o(r)¢(r’)

) o(r)o(r’)

=2
a=(m,n,p)=0 _kO So _.k2
abc | cos(koR,) 2
+— | —%1- Zsi(yR
8 [ 47R, ( aT iy O))

where
ma nw pm
é(r) —sm(——;l——x)mn(?y)sm(Tz)

5 12
Hr= )+ (=27

and Si() is the sine integral function. The finite mode sum
S, contains all the modes that fall within a preset summa-
tion bandwidth of 2y centered about k. For an electri-
cally large cavity, the selection of vy is arbitrary so long as
it meets the criterion y > 0.3 7/a, where «a is the smallest
dimension of the cavity. When the source is close to the
wall, the first image term must be included in the above
equation to yield a good approximation (see (16)).

The hybrid representation developed in this paper is
valid for either real or complex k,. Except for the require-
ment that the bandwidth chosen for the mode sum not be
too small, the hybrid representation is in general a good
approximation of the modal representation, and it pos-

Ro=[(x—x)?
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sesses unique properties that allow for feasible numerical
evaluation. With this alternate representation, the effect of
a scatterer in an electrically large rectangular cavity can be
examined numerically. As illustrated in [20], this hybrid
Green’s function is most useful in the numerical computa-
tion of the induced current J and the scattered field for a
simply structured scatterer in an electrically large rectangu-
lar cavity.

APPENDIX
SUMMING OVER FINITE INTERVALS

Consider the finite range sum defined as

Zo Z Zf(mnp)

=g R=nNg p= Py
Ny Iy ez(m'fr/aX+nw/b)/'+p71/cZ)
Z Z Z (k2 _ "‘2)

m=mgy n="ng p=py @ kO

(A1)

Applying the finite Poisson summation formula (11), and
letting

T Ty
ko= —— k =
x a ¥

2 57
b e

and

1\ 7
X1=(Wlo—5);

1\ 7 1\ 7 1\«
J’2=(N0+E)Z le(l’o"i); 32:(P0+5);

we can transform (Al) to

abc
Q=—3 Z Z Z
T =—0w f=—wf=—w
[ zf)zf'zF(a,B,g) dkc dic, dk, (A2)
X1 T A
where
el[k‘(X+Zaoz)+kv(Y+2bﬁ)+k7(Z+2C$)]
Fla.B,§) = (A3)

(k2+k2+4k2)-R2

The summation intervals specified in (Al) transform di-
rectly into integration limits on the right side of (A2). A
typical range of integration would correspond to the shaded
area of Fig. &, where each grid on the figure corresponds to
a different set of summation interval (mg, ng, py) to
(M,, N,. P,). Suppose we now arbitrarily select a finite set
of grids (or summation intervals) so that they are clustered
around k, as shown in Fig. 9. Then

fff+m+%zzpmmm>
T s ]

Fla,B.§) dk dk,dk,. (A4)
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Fig. 8. A typical range of integration for the finite sum.
We now make the approximations

VIR

F(a,B,$)dk, dk,dk,

~ ff/[s(a,/},g)dkxdkydkz (AS)

where V) is the volume of the spherical shell bounded by
ky and k,, and

My Ry Po m;

M, N, B

+ZZZ]f(m,n,p)
=YY f(m,n,p) (AS)
So

where the S, represents all the modes (m, n, p) that fall
within the spherical shell. Combining (A5) and (A6) above,
we get

LEE (.. 7)
Y

a,B,§=—00
/_f/ ei[kX(X+ 2a¢x)+’ky(Y+ 2bBY+k (Z+2c§)]
17

(N

— dk dk  dk,.

(k2+ K2+ k2)— k2 Ty

(A7)

The triple integration of (A7) can be evaluated in a

straightforward manner by transforming to the spherical
coordinates using the following substitutions:

k*=k2+kZ+k?

k.= ksinf,cos ¢, k,=ksinf, sing, k,=kcos@,
p= [(X+2aa)2+(Y+2b,8)2]1/2
1, 11/2 _ Y4208
R= [p +(Z+2c§)] Pop = tan (—X+2aa

The integrand becomes

eipk sinf, cos(Py +dag) +ikcosb (Z+2cE)

F(a,B,¢) =

K- k2
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Fig. 9. - Arrangement of a finite set of summation intervals.

» k,

The result of this integration is

b <) |
LYY (monp) =5 YLL g(af&R) (A9
So

@, f,6=—o0

where B

(a6 R) = ( si(r(ko- k)
—Si(R(lEO ky))+Si(R (ko +ky))
=Si(R(ko+ k)]
N ZSiH(IfOR) [Cl(R‘(lzo— kl)

+Ci(R(k0+k2))]. (A9)

Si and Ci are the sine and cosine integrals, defined as
Si(z) = [¢sint/tdt, and Ci(z)= — [Fcost/tdt. For real
ko, and a symmetrical shell width, ie., ky=ky—v, ky=
ko + v, (A9) reduces to ’ :

2cos(k R)
iR
—Si(R(2k0+Y))]

+ M[—- im - Ci(R(2ko—v))

g(a,B,&R) = [-2Si(Ry)+Si(R(2k,—v))

iR
+Ci(R(2ko+v))]. (A10)
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